

 Navigation

 	
 index

 	
 next |

 	Venus.js documentation

Venus.js Documentation

Introduction

	Getting started
	Install Venus.js

	Write your first test

	Run your first test

	Run tests in the browser

	Getting help

Tutorials

	Debugging failing tests

	Test execution environments
	Local (Manual)

	PhantomJS

	Selenium Grid

	Sauce Labs

	Using different testing libraries
	Mocha

	Jasmine

	QUnit

	Using fixtures
	Why?

	How?

	Examples

	VIM Integration

Reference

	Annotations
	@venus-library

	@venus-include

	@venus-include-group

	@venus-fixture

	@venus-fixture-reset

	@venus-template

	@venus-code

	@venus-resource

	@venus-execute

	Command line flags
	venus run
	venus init

	venus demo

	Config files
	Overview:

	What can be specified in .venus/config?
	libraries:

	default:

	includes:

	environments:

	basePaths:

	Working config example:

	Supported Libraries
	Mocha

	Jasmine

	QUnit

Development Guide

	Build a custom adaptor
	Background

	Example

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Getting started

Install Venus.js

	Install Node.js:

Please see the instructions at http://www.nodejs.org for getting node.js running on your platform.

	Install Venus.js via NPM:

npm install -g venus

	Verify installation:

venus demo

Write your first test

Venus.js designed to work with multiple testing libraries (see Supported Libraries).

In the directory of your choice, create a new file (lets call it example.js):

/**
 * @venus-library mocha
 */
describe('First unit test using venus.js', function() {
 it('Gives us the ability to run test from the command line', function() {
 expect(2 + 2).to.be(4);
 });
});

Run your first test

venus run -t example.js -e ghost

Output should look similar to

info: Serving test: http://172.16.146.107:2013/venus-core/1
info: Venus server started at http://172.16.146.107:2013 and is serving 1 test suites

 PhantomJS/1.9.1 /home/smclaugh/example.js

 First unit test using venus.js
 --
 ✓ Gives us the ability to run test from the command line

--
 1 tests executed in 899 ms
 1 ✓ tests passed
 0 x tests failed

Run tests in the browser

You can also run tests with Venus manually in a browser. To do this, start Venus without the -e (environment) flag:

venus run -t example.js

info: Serving test: http://172.16.146.107:2013/venus-core/1
info: Venus server started at http://172.16.146.107:2013 and is serving 1 test suites

Next, open the first URL printed above in your browser of choice (note: the URL on your machine will be different). You should see a screen similar to this:

[image: _images/venus_ui.png]

Getting help

Having issuse getting these examples to work? Check out the Venus.js Google Group [https://groups.google.com/forum/#!forum/venusjs].

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Debugging failing tests

Sometimes tests will give you a useful message explaining why they
failed, but there are other times where they fail or hang without
providing a clue of what is going on.

When you are having this issue the best way to debug the issue is to
open the test in your favorite browser.

[image: ../_images/image1.png]
There is more happening on the browser than what we see at first glance.
If you take a look at the DOM you will see an iframe with a src
attribute something like /venus-core/sandbox/1, and this is where all
the action happens. In there you can see all the libraries being loaded
for your test, the file you are testing and the test code.

[image: ../_images/image2.png]
If you don’t see your script files being loaded, this is a good
indicator that something is wrong with your test. This is an example of
how the iframe looked on one test were I was triggering a redirect and
by doing that breaking my tests:

[image: ../_images/image3.png]
Knowing this is also useful to find out why a test is failing or
something is not working as expected. Since you now have access to your
JS files from your developer tools you can set break points and go
through the code step by step to figure out why something is failing.

[image: ../_images/image4.png]

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Test execution environments

Local (Manual)

You can run a unit test with any browser you have installed locally on your machine

Below is an example of running tests.js locally:

$ venus run -t tests.js

PhantomJS

PhantomJS is a headless browser that Venus leverages to seamlessly run unit tests

The command line option -n or –phantom will specify the test to run with PhantomJS

Below is an example of running tests.js with PhantomJS:

$ venus run -t tests.js -n

This is a shortcut to the command:

$ venus run -t tests.js -e ghost

The -e, or --environment flag specifies which test environment to use. For more information, see
configuring test environments below.

Selenium Grid

Using a Selenium Grid setup, you can request a VM with a given browser to execute a unit test via Venus. You can
configure different environments in your venus config file. Here is a sample config file setup to run tests remotely in
several popular browsers, through selenium grid:

environments: {
 ie7: {
 uac: 'WebDriverUac',
 browser: 'internet explorer',
 version: '7.0',
 host: 'selenium-0101.corp.net',
 port: 4444
 },
 ie8: {
 uac: 'WebDriverUac',
 browser: 'internet explorer',
 version: '8.0',
 host: 'selenium-0101.corp.net',
 port: 4444
 },
 ie9: {
 uac: 'WebDriverUac',
 browser: 'internet explorer',
 version: '9.0',
 host: 'selenium-0101.corp.net',
 port: 4444
 }
}

WebDriverUac refers to a Venus User Agent Controller module which understands how
to communicate with a selenium grid server. The other options in each section are passed
along, to request a specific browser version for running tests.

If I hade a selenium grid server running at selenium-1010.corp.net:4444, I could run this venus command
to execute tests on Internet Explorer 8:

$ venus run -t tests.js -e ie8

Sauce Labs

Sauce Labs [http://www.saucelabs.com] is a great hosted solution for running your tests
on a wide variety of platforms. Venus provides a special UAC for running tests with Sauce Labs. You can set this up in your venus config file
by creating an environment like this:

environments: {
 sauce: {
 uac: 'SauceLabsUac',
 host: 'ondemand.saucelabs.com',
 browser: 'firefox',
 version: 20,
 platform: 'OS X 10.6',
 username: 'your_sauce_labs_username',
 accessKey: 'your_sauce_labs_access_key'
 }
}

You would then run your tests through Sauce Labs with this command:

$ venus run -t tests.js -e sauce

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Using different testing libraries

Venus simplifies running unit tests for JavaScript. To minimize overhead, we set out to create a tool that makes it easier to work with an existing test library such as Mocha, Jasmine or QUnit.

Mocha

Mocha is a feature-rich test framework that provides a wealth of features, not limited to, but including: async support, watching for slow tests, and integration with various assertion libraries. However, it doesn’t contain integration with any browsers (ex. WebKit). By simply adding Venus annotations, you can use Venus to run your tests using PhantomJS, while still being able to run them using the mocha CLI.

Let’s say you have this test file, tests.js:

describe('Array', function() {
 describe('#indexOf()', function() {
 it('should return -1 when the value is not present', function() {
 expect([1, 2, 3].indexOf(5)).to.be(-1);
 expect([1, 2, 3].indexOf(0)).to.be(-1);
 });
 });
});

In order to make tests.js runnable in Venus, modify your file as follows:

/**
 * @venus-library mocha
 * @venus-template sandbox
 */
describe('Array', function() {
 describe('#indexOf()', function() {
 it('should return -1 when the value is not present', function() {
 expect([1, 2, 3].indexOf(5)).to.be(-1);
 expect([1, 2, 3].indexOf(0)).to.be(-1);
 });
 });
});

NOTE: This file uses expect.js, but can be modified to use any assertion library supported by Mocha.

Now you can run your tests using Venus:

$ venus run -t tests.js -n

info: Serving test: http://localhost:2013/venus-core/1
info: executor started on localhost:2013
info: Phantom browser is loading http://localhost:2013/venus-core/1

--

PhantomJS/1.7.0

 Array >> #indexOf()
 ✓ should return -1 when the value is not present

✓ 1 test completed (0.01ms)

Jasmine

Jasmine is a behavior-driven development framework for testing JavaScript code. By default, it includes an HTML file that serves as a test runner. However, it doesn’t provide a command-line interface to run your unit tests. By simply adding Venus annotations, you can use Venus to run your tests both from the command line, while still preserving the ability to use the HTML test runner.

Let’s say you have this test file, tests.js:

describe('A suite', function() {
 it('contains spec with an expectation', function() {
 expect(true).toBe(true);
 });
});

In order to make tests.js runnable in Venus, modify your file as follows:

/**
 * @venus-library jasmine
 * @venus-template sandbox
 */
describe('A suite', function() {
 it('contains spec with an expectation', function() {
 expect(true).toBe(true);
 });
});

Now you can run your tests using Venus:

$ venus run -t tests.js -n

info: Serving test: http://localhost:2013/venus-core/1
info: executor started on localhost:2013
info: Phantom browser is loading http://localhost:2013/venus-core/1

--

PhantomJS/1.7.0

 A suite
 ✓ contains spec with an expectation

✓ 1 test completed (0ms)

QUnit

QUnit is a JavaScript unit test suite used by jQuery, jQuery UI, and jQuery Mobile. It provides a web page interface for running your unit tests. However, it doesn’t provide a command-line interface to run your unit tests. By simply adding Venus annotations, you can use Venus to run your tests both from the command line, while still preserving the ability to use the web page interface.

Let’s say you have this test file, tests.js:

test("hello test", function() {
 ok(1 == "1", "Passed!");
});

In order to make tests.js runnable in Venus, modify your file as follows:

/**
 * @venus-library qunit
 * @venus-template sandbox
 */

test("hello test", function() {
 ok(1 == "1", "Passed!");
});

Now you can run your tests using Venus:

$ venus run -t tests.js -n

info: Serving test: http://localhost:2013/venus-core/1
info: executor started on localhost:2013
info: Phantom browser is loading http://localhost:2013/venus-core/1

--

PhantomJS/1.7.0

 hello test
 ✓ Passed!

✓ 1 test completed (20ms)

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Using fixtures

Why?

@venus-fixture imports HTML markup into your test page and gives you
quick access to DOM nodes for testing your client side interactions.
Importing HTML fixtures saves you the time otherwise spent stubbing or
mocking the DOM or elements.

How?

Include the @venus-fixture directive in your venus annotation block.
The argument passed to @venus-fixture is a file path, it’s relative
to test file you’re annotating. An example of this directive is below:

@venus-fixture ../fixtures/exampleFixture.fixture.html

The full annotation block to may look like the following:

/**
 * @venus-library mocha
 * @venus-include ../lib/zepto.1.0.min.js
 * @venus-include ../src/Silence.js
 * @venus-fixture ../fixtures/exampleFixture.fixture.html
 */

When you run your test, the markup from exampleFixture.fixture.html
will be available on your test page. The ability to test your DOM
manipulations and callbacks to user interactions is now at your
fingertips.

Examples

Example test directory structure:

// Example Test Folder Structure

|-simpleFixtureExample
 |-lib
 |-zepto.1.0.min.js
 |-specs
 |-exampleFixture.spec.js
 |-fixtures
 |-exampleFixture.fixture.html

The contents of our HTML fixture file exampleFixture.fixture.html:

<div id="example-fixture-container"></div>

Example test uses zepto to verify that our HTML fixture has been loaded on the page:

describe('Testing @venus-fixture', function() {
 it('Loads our html', function() {
 var length = $('#example-fixture-container').length;
 expect(length).to.be(1);
 });
});

Example test verifies that a callback was fired by a click event, and that the arguments passed contained a specific DOM id:

describe('Test event delegation target', function() {
 it('Click target should equal "example-fixture-container"', function() {
 var spy = sinon.spy();

 document.addEventListener('click', spy, true);
 $('#example-fixture-container').trigger('click');

 // Callback gets called once
 expect(spy.calledOnce).to.equal(true);
 // The expected element id was passed
 expect(spy.args[0][0].target.id).to.equal('example-fixture-container');
 });
});

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

VIM Integration

The venus.vim [https://github.com/venusjs/venus.vim] vim plugin allows you to easily run tests without leaving your editor. Supported commands:

	:VenusRun – run current file in Venus.js in the PhantomJS environment

We recommend using a nice VIM package manager, such as vundle [https://github.com/gmarik/vundle], to manage your vim plugins. It is also helpful to map the :VenusRun command to a
shortcut key, such as F12. You can do this in your .vimrc very easily:

map <F12> :VenusRun<CR>

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Annotations

Venus allows you to use comment-based annotations to define configurations for your unit test:

@venus-library

Indicates the test library you wish to use. The test libraries that are currently supported are mocha, jasmine and qunit (Default value is mocha).

Example using the mocha test library:

/**
 * @venus-library mocha
 */

@venus-include

JavaScript file to include with your unit test. Use a seperate @venus-include annotation for every file you wish to include. The path is relative to the location of your test file.

/**
 * @venus-include dependency1.js
 * @venus-include foo/dependency2.js
 * @venus-include ../bar/dependency3.js
 */

@venus-include-group

Includes the given include group. An include group is a set of JavaScript files to include, defined in the Venus config (.venus/config).

For example, let’s say we want to include a group named groupA, which will include fileA.js and fileB.js

/**
 * @venus-include-group groupA
 */

But before we can actually use that annotation, we need to update our Venus config to define what files are included with groupA

{
 // Include groups
 includes: {
 groupA: [
 'fileA.js',
 'fileB.js'
],
 groupB: [
 ...
]
 }

}

@venus-fixture

The location of the file that will include HTML on the test harness page. This is useful for including some DOM elements that your JavaScript control depends on. The path is relative to the location of your test file.

Example:

/**
 * @venus-fixture fixtures/Greeter.html
 */

@venus-fixture-reset

Disable the behavior of resetting test HTML fixtures after each test executes (Default value is true)

Example:

/**
 * @venus-fixture-reset false
 */

@venus-template

The location of the file that will serve as your test harness page for your unit test. You typically will not need to use this annotation, unless you are doing something extremely custom (Default value is .venus/templates/default.tl).

Example:

/**
 * @venus-template templates/mytemplate.tl
 */

@venus-code

This annotation is used to include the source code file which is under test. Files included with @venus-code are eligible for code coverage instrumentation, whereas
files included with @venus-include are not.

/**
 * @venus-code widget.js
 */

@venus-resource

Make external files available within the sandbox. This makes it possible to do such things as fetching files via AJAX in your unit test.

Here is an example:

/**
 * @venus-library mocha
 * @venus-include jquery.js
 * @venus-resource data1.txt
 * @venus-resource foo/data2.txt
 * @venus-resource foo/bar/data3.txt
 * @venus-resource ../biz/data4.txt
 */

describe('should retrieve data1.txt', function() {
 it('should retrieve data1.txt', function(done) {
 $.get(location.href + '/data1.txt')
 .success(function() {
 expect(true).to.be(true);
 done();
 })
 });

 it('should retrieve data2.txt', function(done) {
 $.get(location.href + '/foo/data2.txt')
 .success(function() {
 expect(true).to.be(true);
 done();
 })
 });

 it('should retrieve data3.txt', function(done) {
 $.get(location.href + '/foo/bar/data3.txt')
 .success(function() {
 expect(true).to.be(true);
 done();
 })
 });

 it('should retrieve data4.txt', function(done) {
 $.get(location.href + '/biz/data4.txt')
 .success(function() {
 expect(true).to.be(true);
 done();
 })
 });
});

@venus-execute

Run code in Node.js before a test runs in the browser.

	For example, let’s say you have the following files:

	
	Tree.js

	setup.js

	setup_async.js

	Tree.spec.js

Tree.spec.js is a unit test file for Tree.js. However, We need setup.js and setup_async.js to execute before any unit tests are ran in Tree.spec.js

In order to do so, we can define the files as follows:

Tree.js

function Tree(id) {
 this.id = id;
}

setup.js

module.exports.before = function (ctx) {
 console.log('before hook:', ctx);
};

setup_async.js

module.exports.before = function (ctx) {
 var when, def;

 try {
 when = require('when');
 } catch (e) {
 console.log('Run `npm install -g when` before running this example');
 return;
 }

 def = when.defer();

 setTimeout(function () {
 console.log('before hook: 5 seconds later...');
 console.log('before hook ctx:', ctx);
 def.resolve();
 }, 5000);

 return def.promise;
};

Tree.spec.js

/**
 * @venus-library mocha
 * @venus-code ./Tree.js
 * @venus-execute ./setup.js
 * @venus-execute ./setup_async.js
 */

describe('Tree', function() {
 var tree;

 before(function () {
 tree = new Tree(23);
 });

 it('should have the correct id', function () {
 expect(tree.id).to.be(23);
 });

});

NOTE: Currently, we only support the before hook. We plan to support additional hooks in the future such as after, beforeEach, and afterEach

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Command line flags

venus run

Run tests specified as an argument to the -t or –test option. When this command is executed, venus will look for a .venus config file in the current directory or otherwise traverse upwards until one is found. If no config file is found you will recieve an error.

Options:

-h, --help output usage information
-t, --test [tests] Comma separated string of tests to run
-p, --port [port] port to run on
-l, --locale [locale] Specify locale to use
-v, --verbose Run in verbose mode
-d, --debug Run in debug mode
-c, --coverage Generate Code Coverage Report
--hostname [host] Set hostname for test URLs, defaults to your ip address
--no-annotations Include test files with no Venus annotations (@venus-*)
-e, --environment [env] Specify environment to run tests in
-r, --reporter [reporter] Test reporter to use. Default is "DefaultReporter"
-o, --output-file [path] File to record test results
-n, --phantom Run with PhantomJS. This is a shortcut to --environment ghost

Basic format:

venus run --test [path to folder containing tests or single test file] [options]

Usage (Run JavaScript tests found in a folder and its subfolders in phantomjs headless browser):

venus run -t myproject/containing/tests --phantom

venus init

Generates a .venus project folder, with a boilerplate config file

Options:

-h, --help output usage information
-l, --locale [locale] Specify locale to use
-v, --verbose Run in verbose mode
-d, --debug Run in debug mode

Usage:

venus init

Output:

|-.venus/
 |-config
 |-adaptors/
 |-templates/
 |-libraries/

Boilerplate .venus/config file:

// Configuration file for Venus
// All paths can be relative (to the location of this config file) or absolute
{
}

venus demo

Runs an example venus test using Mocha and PhantomJS

Example:

venus demo

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Config files

Overview:

Venus searches for a file named ‘config’ in the ‘.venus’ directory then proceeds to walk up the directory tree looking for other ‘.venus/config’ files.

When multiple configs are encountered, the config files will extend one another from the order of the furthest config to the closest (closest config to cwd takes precedence).

What can be specified in .venus/config?

libraries:

The libraries config object gives you a way to create a grouping of files that can be passed as an argument to @venus-library annotation for inclusion on the test harness.

Given the following directory structure:

|-.venus/
 |-config
 |-adaptors/
 |-venus-mocha-1.12.0.js
 |-libraries/
 |-mocha-1.12.0.js
 |-expect.js
 |-sinon.js

Define a library inside the libraries object. The library should include an array called includes that contains an array of filepaths.

// Example snippet from .venus/config

{
 libraries: {
 mocha: {
 includes: [
 'libraries/mocha-1.12.0.js',
 'libraries/expect.js',
 'adaptors/adaptor-template.js',
 'adaptors/venus-mocha-1.12.0.js',
 'libraries/sinon.js'
]
 }
 },
 default: {},
 environments: {},
 includes: {},
 binaries: {}
}

Notice that the library will be referenced by the key name (mocha) and anything specified within the “includes” array will be injected into the test harness page (see “@venus-library mocha” below):

// Example file: test/unit/js/someScript.spec.js

/**
 * @venus-library mocha
 * @venus-include ../../js/someScript.js
 */

 describe('My test', function() {
 it('should pass', function() {
 expect(true).to.be(true);
 });
 });

default:

The “default” option allows you to specify one of your libraries as the default library to be included, which frees you from using the @venus-library annotation as in the previous example. It’s useful if you are using the same test libraries across all of your suites/specs, or want to run a default environment.

// Example snippet from .venus/config

{
 default: {
 library: 'mocha',
 environment: 'ghost'
 }
 libraries: {
 mocha: {
 includes: [
 ...
]
 }
 },
 environments: {
 ghost: {
 ...
 }
 },
 basePaths: {},
 includes: {},
 binaries: {}
}

In the above example, all of the test using this config would assume that you wanted to include the “mocha” library includes, and “ghost” as your default environment.

/**
 * @venus-include ../../js/someScript.js
 */

 describe('My test', function() {
 it('should pass', function() {
 expect(true).to.be(true);
 });
 });

includes:

Similar to libraries, includes allow us to specify groups of files that can be included on the test harness page, by using the @venus-include annotation.

Specifying an include group can be done like so:

// Example snippet from .venus/config
{
 includes: {
 websockets: [
 '../../bower_components/sio-client/socket.io.js',
 '../../bower_components/jquery/jquery.min.js'
]
 },
 default: {},
 libraries: {},
 environments: {},
 basePaths: {},
 binaries: {}
}

Using the created include can be done like so:

/**
 * @venus-include websockets
 */
 describe('My test', function() {
 it('should pass', function() {
 expect(true).to.be(true);
 });
 });

environments:

In this config object, you can define custom environments (e.g. browsers) for use in the CLI. The flag –environment, -e can be used to specify which environment you’d like to use. Below are some commented example environment configurations.

// Example snippet from .venus/config

{
 environments: {

 // Run ie 7.0 on selenium webdriver
 sauce_ie_7: {
 uac: 'WebDriverUac',
 browser: 'internet explorer',
 version: '7.0',
 host: 'selenium.your-server.com',
 port: 4444
 },

 // Run chrome version 42 in sauce labs
 sauce_chrome_42: {
 uac: 'SauceLabsUac',
 host: 'ondemand.saucelabs.com',
 browser: 'chrome',
 version: 42,
 platform: 'OS X 10.9',
 username: 'my_saucelabs_user_name',
 accessKey: '1b0222b9-36ed-414d-865x-e4d14c8a45xf3'
 },

 // Run using a local phantom binary
 ghost: {
 uac: 'GhostDriverUac',
 binaryPath: ['../bin/phantomjs', '../node_modules/phantomjs/bin/phantomjs'],
 host: 'localhost',
 port: '8910'
 }
 },
 default: {},
 libraries: {},
 includes: {},
 basePaths: {},
 binaries: {}
}

basePaths:

The basePaths object defines aliases that can be used within venus annotations for brevity/convenience:

// Example snippet from .venus/config

{
 basePaths: {
 appJs: '../../js'
 },
 default: {},
 libraries: {},
 includes: {},
 environments: {},
 binaries: {}
}

The definition we created above “appJs” will be substituted with ”../../js/” when venus looks for your test file:

// The venus-include path below would resolve to "../../js/" before becoming an absolute path
/**
 * @venus-include appJs/someScript.js
 */

 describe('My test', function() {
 it('should pass', function() {
 expect(true).to.be(true);
 });
 });

Working config example:

See a working config here on github [https://github.com/linkedin/venus.js/blob/2.x/.venus/config].

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Venus.js documentation

Supported Libraries

Venus.js is designed to work with multiple testing libraries. Out of the box, Venus.js supports:

	Mocha [http://visionmedia.github.io/mocha/]

	Jasmine [http://pivotal.github.io/jasmine/]

	QUnit [http://qunitjs.com/]

When writing a test, use the @venus-library annotation to indicate which testing library you wish to use (see Annotations).

Here is the same test written with Mocha, Jasmine, and QUnit.

Mocha

Mocha is unique in that you can use your choice of assertion libraries. By default, Venus ships with the expect.js [https://github.com/LearnBoost/expect.js/blob/master/README.md] assertion library for use with Mocha.

/**
 * @venus-library mocha
 * @venus-include ../src/Greeter.js
 */

describe('Greeter', function () {

 it('.talk() should format string', function() {
 var greet = new Greeter(),
 result = greet.talk('Hello %s, how are you doing this fine %s?', 'Seth', 'Thursday');

 expect(result).to.be('Hello Seth, how are you doing this fine Thursday?');
 });

});

Jasmine

/**
 * @venus-library jasmine
 * @venus-include ../src/Greeter.js
 */

describe('Greeter', function () {

 it('.talk() should format string', function() {
 var greet = new Greeter(),
 result = greet.talk('Hello %s, how are you doing this fine %s?', 'Seth', 'Thursday');

 expect(result).toBe('Hello Seth, how are you doing this fine Thursday?');
 });

});

QUnit

/**
 * @venus-library qunit
 * @venus-include ../src/Greeter.js
 */

test('Greeter', function () {
 var greet = new Greeter(),
 result = greet.talk('Hello %s, how are you doing this fine %s?', 'Seth', 'Thursday');

 equal(result, 'Hello Seth, how are you doing this fine Thursday?', 'Greeter.talk() formats the string correctly');
});

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	
 previous |

 	Venus.js documentation

Build a custom adaptor

Background

Venus uses adaptors to communicate with different test libraries. Each
adaptor normalizes the output of it’s respective framework in order for Venus to process the test results.

The libraries currently supported are:

	Mocha [http://visionmedia.github.io/mocha/]

	Jasmine [http://pivotal.github.io/jasmine/]

	QUnit [http://qunitjs.com/]

All adaptors can be found in the adaptors [https://github.com/linkedin/venus.js/tree/master/.venus/adaptors] folder under the root Venus application.

Inside adaptors [https://github.com/linkedin/venus.js/tree/master/.venus/adaptors], you will find a file named
adaptor-template.js. This file serves as the base template for all
adaptors.

Example

Let’s say we want to create an adaptor for a test framework named FooBar
(library file is named foobar.js)

The first step is to place foobar.js in libraries [https://github.com/linkedin/venus.js/tree/master/.venus/libraries].

Next, create a file named foobar.js and place it in adaptors [https://github.com/linkedin/venus.js/tree/master/.venus/adaptors].

The contents of foobar.js should do the following:

	Instantiate the adaptor function Adaptor() {};

	Inherit the adaptor template
Adaptor.prototype = new AdaptorTemplate();

	Override the following methods, which are defined in
adaptor-template.js, based on the FooBar test framework:
	start()

	getTestMessage()

	getTestName()

	getTestStatus()

	getTestStackTrace()

	getTotal()

	getTotalFailed()

	getTotalPassed()

	getTotalRuntime()

Finally, define the configuration for FooBar in ./config:

foobar: {
 includes: [
 'libraries/foobar.js',
 'adaptors/adaptor-template.js',
 'adaptors/foobar-.js'
]
}

Now you can add the annotation @venus-library foobar at the
top of any JS unit test to use the FooBar test library with your tests.

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 Navigation

 	
 index

 	Venus.js documentation

Index

 Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

 _static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_images/image3.png
check your console for test results

Gemerts | Resowces Nework Souces Tmeine Profies Aus Consok

» Computed Style
v htnl>
» <heads.</head> Y Shles
v body= » Metics
"check your console for test results » Properties
v ifrene sro-’Juenus:core/sandbos/L ié="sandbox’> T
» EventListeners 7
vhtnl>
vhead>
<titlesVenus Test Server/titles
<link rel="stylesheet® type="text/css" href="/css/app.css">
</head>
v <body>
<hi=Venus</h1>
Vel class="test-list"s
vais
*/Users /anovelo/mobile/touch-Linkedin/test /unit /touch-Linkedin/static/javascripts/nativeLauncher . spec. 15"

http://anovel o-nn: 2013/venus -core/1
<nis
<=
</body>
</htal>
</ifrane>
</body>
</htal>

0,= Q k-

_images/image1.png
check your console for test results

_images/venus_ui.png
Whvenus Testhamess x

€ - C [} 172.16.146.107:2013/venus-core/1

$ Test Results Fixtures

First unit test using venus.js

¥ Gives us the ability to run test from the command line

_images/image2.png
check your console for test results

| Eements | Resowces MNework Sowces Tmelne Profes Audis Console

» Computed Style O show inhertted
vehtnl> v
» <heads.</head> Styles
S elenent .style {
“check your console for test results” ; N
s e e e e iframe
¥ #docunent Weiched CSS Files
head user agent stylesheet
veheads 5
title-Venus Test Harness (Sandbox)</title=
» Metics
ema/test T\ sb/ancha 137 /scrist e
[tenp/test/L/lib/expect is"></script>
[temp/test/1/1ib/adaptor-tenplate.is"></script= | " » DOM Breakpoints
Jtenpytest/1/Tib/mocha-venus. ">/ cript> Libraries » EventListeners -
/tenp/test/L/lib/sinon-1.5.0 15" ></script>
[tenp/test/L/Lib/zepto is"~</script>
[tenp/test/L/Lib/underscore is"></script>
File being tested
v <body>
Test code
SCPIRT Typas Text/Javascrint window adaptor:start();</script=
</body>
</htal>
</ifrane>
</body>
</htal>

B e oo [[%

_images/image4.png
Waiting for anovelo-mn...

Eemerts Resources Network | Sources | Timene Frofies Audts Console)
(11 javaseripts.natveLauncherys < FI[> [2 & [1 oh pane
B <| > Watch Expressions_+ G |-
0| /e

51| " Erase a cookie Y Cah Stack

%) *

93|+ Gparan string nane.- Name of the cookic L

5| _x/ cicljavserps naveLsuncher 5152

module eraseCookie = function(nanel { (ananymass functon)

oo odele:setcookicnane, . 1T]

0,3 Q0 O k-

dev_guide/contribute.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Venus.js documentation »

 © Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

releasing_venus.html

 Navigation

 		
 index

 		Venus.js documentation »

 *
Releasing Venus
*

To NPM...

 © Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

search.html

 Navigation

 		
 index

 		Venus.js documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, LinkedIn.
 Last updated on Apr 20, 2015.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

